بحث كامل عن متوسط معدل التغيير والقيم القصوى

بحث كامل عن متوسط معدل التغيير والقيم القصوى

القيم القصوى
حساب المتغيرات معني بالحدود العظمى أو الدنيا للدوال، التي تسمى مجتمعة القيم القصوى. تعتمد تابعة الدالة الرياضية على دالة، مشابهة إلى حد ما للطريقة التي يمكن أن تعتمد بها دالة على متغير عددي، وهكذا تم وصف تابعة الدالة الرياضية كدالة لدالة. تابعات الدوال لها قيم قصوى سواء عظمى أو دنيا بالنسبة للعناصر y لفضاء دالة معطاة ومعرفة عبر مجال معطى.

الدالة J [ y ] يقال أن يكون لها قيمة قصوى في الدالة f إذا كانΔJ = J [ y ] – J [ f] له نفس الإشارة لكل y في أحد الأحياء العشوائية الصغيرة المجاورة عند f . والدالة f تسمى دالة قصوى. والقيم القصوى للدالة J [ f ] تكون عظمى إذا كان ΔJ ≤ 0 في كل مكان في أحد الاحياء العشوائية الصغيرة المجاورة،ودنيا إذا كان ΔJ ≥ 0 . لفضاء دالة متصلة ، قيم قصوى مقابلة لتابعة دالة تسمى ضعيفة او قوية اعتماداً على إذا كان المشتقات الأولى للدالة المتصلة هيه أيضا متصلة أم لا.

لتعريف أكثر تفصيلاً لقيم القصوى الضعيفة والقوية يشتمل على مفهوم المعيار لدالة في فضاء الدالة، الذي له دور مشابه لطول متجه في فضاء المتجه. إذا كان y عنصر من عناصر فضاء الدالة C(a,b) لجميع الدوال المتصلة التي تم تعريفها في فترة زمنية مغلقة [a,b] ، فالمعيار norm || y ||0 المعرف على C(a,b) هو قيمة الحد الأقصى المطلق y (x) عند a ≤ x ≤ b.

وبالمثل، إذا كان y عنصر من عناصر فضاء الدالة D1(a,b) لجميع دوال من C(a,b) التي لديها المشتقات الأولى متصلة، فالمعيار‘norm || y ||1 المعرف في D1(a,b) هو مجموع قيمة الحد الأقصى المطلق y (x) وقيمة الحد الأقصى المطلق للمشتقة الاولى المطلقة y ′(x) عند a ≤ x ≤ b.

الدالة J [ y ] يقال أن لها قيم قصوى ضعيفة في الدالة f إذا وجد بعض δ> 0 ، حيث أن J [ y ] – J [ f] لها نفس الإشارة لكل الدوال y ∈ D1(a,b) مع || y – f ||1 <δ. وبالمثل، الدالة J [ y ] يقال أن لها قيم قصوى عظمى في الدالة f إذا وجد δ> 0 حيث أن J [ y ] – J [ f] لها نفس الإشارة لكل الدوال y ∈ C (a,b) مع || y – f ||0 <δ. كلا القيم القصوى القوية والضعيفة على حد سواء لدالة هم لفضاء دالة متصلة ولكن القيم القصوى الضعيفة لها احتياجات إضافية حيث تكون المشتقات الأولى للدالة في الفضاء متصلة . ولذا القيم القصوى العظمى هي أيضاً قصوى ضعيفة ،ولكن لا يجوز إجراء العكس. إيجاد القيم القصوى العظمى أصعب من العثور على القيم القصوى الضعيفة.[9] مثال على الشرط الضروري الذي يتم استخدامها للعثور على القيم القصوى الضعيفة هي معادلة أويلر – لاغرانج. معادلة اويلر-لاغرانج العثور على القيم القصوى تابع الدوال مشابه لإيجاد القيم العظمى والصغرى للمعادلات. الحدود القصوى والدنيا للمعادلة يمكن العثور عليها من خلال إيجاد النقاط حيث تختفي مشتقاتها (أي تساوي الصفر). والحدود القصوى لتابعي الدوال يمكن الحصول عليها من خلال إيجاد معادلات مشتقتها تساوي الصفر. وهذا يؤدي إلى حل معادلة اويلر-لاغرانج .

بواسطة: - آخر تحديث: 12 يوليو
قسم: بحوث


مواضيع ذات صلة بـ بحث كامل عن متوسط معدل التغيير والقيم القصوى