بحث كامل عن القطوع المخروطية وانواعها

   

بحث كامل عن القطوع المخروطية وانواعها

القطوع المخروطية
في الهندسة الوصفية القطع المخروطي منحنى ناتج من تقاطع مخروط بسطح لا يمر برأس وغير مماس له (التقاطع في هاتين الحالتين نقطة أو مستقيم).

دُرست القطع المخروطية منذ وقت طويل يعود إلى 200 قبل الميلاد عندما قام أبولونيو (ِApollonius من Perga) بإجراء دراسة تبين خصائصها.

التعريف التحليلي
في التحليل الرياضي القطع المخروطي هو المحل الهندسي لنقطة تتحرك بحيث تكون العلاقةُ بينَ بعدها عن نقطةٍ ثابتةٍ وبعدها عن مستقيمٍ ثابتٍ نسبةً ثابتةً. تسمى هذه النسبة الاختلاف المركزي(Eccentricity)، كما تسمى النقطة الثابتة البؤرة (Focus)، أما المستقيم الثابت فيسمى الدليل (directrix).

حيث:

– P هي نقطة (x,y) تقع على القطع.

– S البؤرة

– e معامل الاختلاف المركزي

– و m هي مسقط العمودي ل P على الدليل.

إذا كان الاختلاف المركزي مساويا للوحدة (عدد الواحد الصحيح) سُمِّيَ المنحنى قطعا مكافئا (Parabola)، وإذا كان الاختلاف المركزي أقل من الوحدة (الواحد الصحيح) سمي المنحنى قطعا ناقصا (Ellipse)، وإذا كان الاختلاف المركزي أكبر من الوحدة (الواحد) سمي المنحنى قطعا زائدا(Hyperbola).

وتسمى القطوع المكافئة والناقصة والزائدة بالقطوع المخروطية، لأنه يمكن أن تتولد نتيجة قطع السطح المخروطي بمستو في وضع معين.

أنواع القطوع المخروطية
لها ثلاثة أنواع هي القطع المكافئ (شلجم)، القطع الزائد (هذلول)، والقطع الناقص (إهليج). وقد تُعدُّ الدائرة نوعًا رابعًا (كما عدَّها أبولونيو) أو يمكن عدُّها نوعا من القطوع الناقصة. ويتشكل القطع الناقص والدائرة عندما يكون تقاطع المستوى والمخروط منحنى مغلق. وتتشكل الدائرة عندما يكون المستوى القاطع موازيًا لدائرة القاعدة المولدة للمخروط. بالنسبة لمخروط يميني (كما في الشكل المقابل في أعلى الصورة) يكون المستوى القاطع عموديًا على محور تماثل المخروط. إذا كان المستوى القاطع موازيا لخط واحد فقط من الخطوط المولدة للمخروط حينها يصبح القطع مفتوحًا وليس مغلقًا فيسمى قطعًا مكافئًا. وفي الحالة الأخيرة يتكون القطع الزائد وعندما يتقاطع المستوى مع نصفي المخروط الإثنين، مكونًا بذلك منحنيين منفصلين ومفتوحين، يتم في الغالب تجاهل أحدهما والعمل بالآخر.

حالات شاذة
توجد حالات شاذة تنتج عندما يمر المستوى القاطع برأس المخروط Apex. التقاطع في هذه الحالات قد يكون خطًا مستقيما (إذا كان المستوى مماسًا لسطح المخروط)؛ أو نقطة (إذا كانت الزاوية بين المستوى ومحور المخروط أكبر من المماس)؛ أو زوجا من الخطوط المتقاطعة (عندما تكون الزاوية أصغر).

عندما يصبح المخروط أسطوانة أي عندما يكون الرأس واقعا في منطقة اللانهاية تنتج قطوع أسطوانية. بالرغم من أن ذلك يتسبب غالبًا في قطع ناقص أو دائرة، إلا أن هناك حالة شاذة تنتج خطين متوازيين.

الاختلاف المركزي
شروط التعريف الأربعة الواردة أعلاه يمكن جمعها في شرط واحد يعتمد على نقطة افتراضية F(البؤرة) ومستقيم L (الدليل) لا يمر بالنقطة Fوعدد حقيقي غير سالب e (هو معامل الاختلاف المركزي). القطع المخروطي المقابل يتكون من جميع النقاط التي تبعد عن F مسافةً تساوي e مرة بعدها عن L. إذا كانت e بين 0 و 1 نحصل على قطع ناقص، إذا كانت e=1 نتحصل على قطع مكافئ وإذا كانت أكبر من 1 نحصل على قطع زائد.

يوجد دليلان وبؤرتان لكل من القطع الزائد والناقص. المسافة من المركز إلى الدليل هي ، بينما هو المحور شبه الأكبر- semi-major axis – للقطع الناقص، أو المسافة من المركز إلى قمة القطع الزائد. المسافة من المركز للبؤرة هي .

في حالة الدائرة يكون معامل الاختلاف المركزي e= 0 ويمكن تخيل أن الدليل قد تم استبعاده لانهائيًا عن المركز. لكن من غير المفيد استخدام التعبير: إن الدائرة تتكون من كل النقاط التي التي تبعد مسافة e مرة بعدها عن L لأننا سنحصل على 0 مضروبة في مالانهاية.

لذلك فإن المميز الأساسي ما يخص القطع المخروطي هو مقياس يبين لأي مدى يبعد القطع عن أن يكون دائرة. لقيمة معطاة ، كلما اقتربت من 1 كلما نقص طول المحور شبه الأصغر semi-minor axis.

المعادلة الجبرية
يمكن تمثيل معادلة القطع المخروطي بأشكال مختلفة منها:

إذا كان الاختلاف المركزي يساوي ھ وكانت البؤرة عند نقطة الأصل (0،0) والدليل مستقيما عموديا على محور السينات يقطعه على بعد ف فإن معادلة القطع المخروطي تعطى بالمعادلة التالية:

(1 – ھ^2) س^2 + 2ھ^2 ف س + ص^2 = ھ^2 ف

معادلة من الدرجة الثانية في متغيرين س، ص ويمكن كتابة هذه المعادلة على الصورة التالية:

أ س^2 + 2ب س ص + جـ ص^2 + 2د س + 2ھ ص + و = 0

الإحداثيات الديكارتية
في النظام الإحداثي الديكارتي يكون منحنى دالة تربيعية في متغيرين دوما قطعا مخروطيا، وكل القطوع المخروطية تتكون بهذه الطريقة.

القطع الزائد المستطيل:
مثل هذه الصيغ تكون متماثلة حول محور x، و فيما يخصُّ الدائرة و القطع الزائد والناقص حول محور y و القطع الزائد المستطيل هي حالة التماثل الوحيدة التي تكون حول و . لذلك فان دالتها العكسية هي نفس الدالة الأصلية.

الإحداثيات المتجانسة
في الإحداثيات المتجانسة، القطع المخروطي يمكن تمثيلها كالتالي:

أو بتعبير المصفوفات:

المصفوفة تدعى “مصفوفة القطع المخروطي”. تدعى محددة القطع المخروطي. إذا كان Δ = 0 فإن القطع المخروطي يسمى “منحلًا Degenerate“، وهذا يعني أنه في الحقيقة عبارة عن اتحاد خطين مستقيمين. أي قطع مخروطي يتقاطع مع نفسه هو قطع منحلة ،ولكن ليس كل القطوع المنحلة تقاطع نفسها ،وفي هذه الحالة يكون القطع خطًا مستقيماً.

بواسطة: - آخر تحديث: 12 يوليو
قسم: بحوث


مواضيع ذات صلة بـ بحث كامل عن القطوع المخروطية وانواعها